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CERFACS/Toulouse:	High	Performance	Computing	Research	Centre

u Develop	scientific	and	technical	researches in	order	to	improve	
advanced	computing	methods

u Access	to	computers	with	new	architecture
u Transfer	this	scientific knowledge and	technical	methods	for	

application	to	big	industrial	sectors
u Train	high	qualified	people
u 2015:	The	tenth	computer	set	at	CERFACS	since	1996	occupies	the	

388° place	in	the	top	500	delivering	a	peak	power	of	242	Tflop/s
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Motivations:	Scientific,	Technical,	Societal

Scientific
§ Perform	efficient	Data	Analysis

• Large	number	of	realizations	(ensemble	of	scenarios)
• Uncertainties	range	estimation
• Process	Higher	spatial	and	temporal	resolution
• Easily	share	intermediate	results	with	collaborators

§ Achieve	a	more	robust	and	flexible	Data	Life	Cycle
• More	robust	experiments	setup

– Explore	several	experiment	configurations	to	answer	scientific	questions

• Reproducible	experiments



Motivations:	Scientific,	Technical,	Societal

Scientific
– Every development work in climate modelling comprises comparison 

of realizations
• I introduced this small change.... 
• What happened to my model?
• Does it work?
• Does it work in the expected way?
• Are there consequences I did not expect?
• ...



Motivations:	Scientific,	Technical,	Societal

Technical
§ Process	large	data	volumes,	ideally	near(er)	the	data	storage

• Data	Analytics
• Data	Life	Cycle

§ Streamline	the	data	processing	workflow
§ Proper	metadata	description	of	the	data	objects
§ Properly	track	provenance	information
§ Interconnect	e-infrastructures	and	research	infrastructures	services,	

interfaces	&	platforms



Motivations:	Scientific,	Technical,	Societal
Societal

§ Provide	climate	projections	data	to	climate	change	impact	
researchers,	facilitators,	practitioners

• Ease	access	with	better	intuitive	interfaces
• Provide	more	common	data	formats
• Generate	tailored	products	from	data	processing	workflows

http://climate4impact.eu



Current	situation

Lars		Bärring,	 SMHI	Rossby	Centre,	 	 			Circle-2	 Conference	 on	European	 Climate	Change	Adaptation	 Research	and	Practice,	 Lisbon,	 10-12	March	2014
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Current	situation
Climate	Research	Community

u Data	available	for	scientific	analysis:	a	very	large	
trend
§ Limitations	in	data	access	means	limitations	in	data	analytics	and	

scientific	results

u Download	locally	then	Analyze:	a	workflow	that	
cannot	be	sustained
§ Climate	researchers
§ Impact	researchers



Current	situation

Practical	Example:	Climate	Community

Federation	
Service

• Temperature at 850 hPa field (Aggregated files 30 levels)
• 10 climate models
• 1960-1990 & 2040-2070 = 60 years = 21 915 days
• Daily fields = 1 field per day
• Global spatial scale 100 km resolution

TOTAL: 6 754 500 fields to download
~100 Kb per 2D field = 626 Gb

After the analysis post-processing
• Anomaly of the average of the two periods over a specific 

country for each climate model
• Result: 10 times 2D fields over a small domain

• Estimated datasize after post-processing: 1 Mb
Data reduction...



Current	situation

Projected increase in global climate data for climate models, remotely sensed 
data, and in situ instrumental/proxy data. From Overpeck et al. Science, 2011 



Climate	Data	Distribution:	ESGF

7.05.2014EGU

!

IS-ENES ESGF Portals 
• BADC (UK)
• DKRZ (Germany)
• IPSL (France)
• SMHI (Sweden)
• CMCC (Italy)
• DMI (Denmark)

ESGF Data Nodes 2015:
• 40 worldwide
• 18 in Europe 

(coordinated in IS-ENES)

IS-ENES climate4impact Portal
• KNMI (Netherlands)
• Interlinked with Uni. Cantabria 

downscaling portal (Spain)

CLIPC Portal 
• Climate Information Portal for 

CopernicusAck: Michael Lautenschlager, DKRZ



Current	situation:	CMIP6	Climate	Simulations



Current	situation
Downloaded data	volumes	– European ESGF	data	nodes



Current	situation
Status	CMIP5	data	archive:
1.8	PB	for	59000	data	sets	stored	in	4.3	Mio	Files	in	23	ESGF	data	nodes	CMIP5	data	is	
about	50	times	CMIP3	

Extrapolation	to	CMIP6:
CMIP6	has	a	more	complex	experiment	structure	than	CMIP5.
Expectations:	more	models,	 finer	 spatial	resolution	and	larger	ensembles	
Factor	of	20:	36	PB	in	86	Mio	Files
Factor	of	50:	90	PB	in	215	Mio	Files



"Standard"	Solutions



"Standard"	Solutions

Earth System Grid Federation

5th Annual ESGF Face-to-Face Conference         December 201576

Change Initiative is an open data portal built on ESGF architecture that aims to provide essential climate variable 
data products (see Fig. 14, p. 77).

The OPTIRAD project allows for initial experiences with containers and container orchestration in ESGF (see 
Fig. 15, p. 77).

CMIP6 is a challenging use case that all major ESGF data nodes share.

Fig. 13. CEDA’s JASMIN analysis platform. JASMIN integrates cloud architecture, container technologies, and virtual 
machines to improve flexibility and performance and track maintenance.



"Standard"	Solutions

Snow on/off – Length of snow season

✔ Dataset time range: 1979-2012
✔ 50 GB of input data
✔ 434 tasks performed
✔ 99 NetCDF output files



Background
ESGF	Future	Computing	Nodes:	API

u Goal:	perform	data	analysis	near	the	data	storage
§ Better	data	access
§ Move	away	from	the	download/analyze	workflow



Background:	EUDAT

B2ACCESS

B2Handle



Background:	EUDAT	CDI

21

Community	Repositories
(thematic	data	centres)

EUDAT	generic	data	
service	provider	
storage,	workflows,	
processing,	archive



Background:	EGI

24	countries
1	coordinating	organization	– EGI.eu



Solutions:	Building	Blocks

u ESGF
§ Federation	of	Peer-to-Peer	Data	Nodes
§ Computing	Nodes	API	(Using	ISO-OGC	WPS)
§ OpenID Authentication/Authorization

u EUDAT
§ API	for	deploying	calculations	(workflows)
§ B2	Services	for	orchestration	and	storage

u IS-ENES
§ Data	Analytics	Services	=>	climate4impact.eu	platform



Solutions:	Putting	it	all	together

u Bridge EUDAT	/	EGI	/	ESGF	/	IS-ENES

§ EUDAT	Workflow	API	(GEF)	ó
• ESGF	Computing	API	WPS
• EGI	Federated	Cloud
• IS-ENES	Data	Analytics	Services	=>	climate4impact.eu	platform

§ Challenge:	Common	Authentication	and	Authorization



Big	Data?
What	about	Big	Data	Technologies	and	Analytics??



Big	Data:	Hadoop	and	Climate	Data	@NASA

National Aeronautics and Space Administration!

Example Use Case - WEI Experiment 

8 Applying Apache Hadoop to NASA’s Big Climate Data!
Applying Apache Hadoop to NASA's Big Climate Data: Glenn Tamkin, John 
Schnase, Dan Duffy, Hoot Thompson, Denis Nadeau, Scott Sinno, Savannah 
Strong, 



Big	Data:	Hadoop	and	Climate	Data	@NASA

National Aeronautics and Space Administration!

Bloom Filter Performance Increase 

14 Applying Apache Hadoop to NASA’s Big Climate Data!

Job Description Host Sequence 
(sec) 

Map 
(sec) 

Bloom 
(sec) 

Percent 
Increase 

Read a single parameter (“T”) from a single 
sequenced monthly means file 

Standalone VM 6.1  1.2  1.1  +81.9% 

Single MR job across 4 months of data seeking 
“T” (period = 2) 

Standalone VM 204  67 36  +82.3% 

Generate sequence file from a single MM file Standalone VM 39 41  51 -30.7% 

Single MR job across 4 months of data seeking 
“T” (period = 2) 

Cluster 31 46 22 +29.0% 

Single MR job across 12 months of data seeking 
“T” (period = 3) 

Cluster 49 59 36 +26.5% 

•  The original MapReduce application utilized standard Hadoop Sequence Files.  Later they were modified 

to support three different formats called Sequence, Map, and Bloom.  

•  Dramatic performance increases were observed with the addition of the Bloom filter (~30-80%). !

Applying Apache Hadoop to NASA's Big Climate Data: Glenn Tamkin, John 
Schnase, Dan Duffy, Hoot Thompson, Denis Nadeau, Scott Sinno, Savannah 
Strong, 



Big	Data:	Spark	&	Hadoop	/	CDAS	@NASA

Climate	Data	Services	Framework	(CDAS).	Thomas	Maxwell	and	Dan	Duffy.	NASA.

3 

CDAS: Climate Data Services Framework 
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Big	Data:	Spark	&	Hadoop	/	CDAS	@NASA

Climate	Data	Services	Framework	(CDAS).	Thomas	Maxwell	and	Dan	Duffy.	NASA.
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Big	Data:	Spark	&	Hadoop	/	CDAS	@NASA

Climate	Data	Services	Framework	(CDAS).	Thomas	Maxwell	and	Dan	Duffy.	NASA.
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Disk Cache 

Java Heap 
Analytics API:   Map, Reduce, Broadcast  

Array API: get(i), put(i), slice, iterate  

Array Core 

Indexer 1D Float Buffer 

Java Float Array 

Memory Mapped File 

CD Array 



Big	Data	Analytics	on	Climate	Data

Figure 4: Sample images of atmospheric rivers mis-classified
(false negative) by our deep CNN model. Figure shows to-
tal column water vapor (color map) and land sea boundary
(solid line).

5.3 Classification Results for Weather Fronts
Among the three types of climate events we are looking

at, weather fronts have the most complex spatial pattern.
Weather fronts typically form at the interface of warm air
and cold air, and usually associated with heavy precipitation
due moisture condensation of warm air up-lifting. In satel-
lite images,a weather front is observable as a strip of clouds,
but it is hardly visible on two dimensional fields such as tem-
perature and pressure. In middle latitude (e.g. most U.S.),
a portion of weather front are associated with extra-tropical
cyclones. Figure 5 shows examples of correctly classified
weather front by our deep CNN system. Visually, the nar-
row long regions of high precipitation line up approximately
parallel to the temperature contour. This is a clear charac-
teristics and comparatively easy for deep CNNs to learn.

Because patterns of weather fronts is rather complex and
hardly show up in two dimensional fields, we decided to
further investigate it in later work.

Table 7: Confusion matrix for weather front classification

Label WF Label Non WF
Predict WF 0.876 0.18

Predict Non WF 0.124 0.82

6. FUTURE WORK
In the present study, we trained deep CNNs separately for

classifying tropical cyclones, atmospheric rivers and weather
fronts individually. Ideally, we would like to train a single

neural network for detecting all three types of events. Un-
like object recognition in natural images, climate patterns
detection have unique challenges. Firstly, climate events
happen at vastly di↵erent spatial scales. For example, a
tropical cyclone typically extends over less than 500 kilo-
meters in radius, while an atmospheric river can be several
thousand kilometers long. Secondly, di↵erent climate events
are characterized by di↵erent sets of physical variables. For

Figure 5: Sample images of weather front correctly classified
by our deep CNN model. Figure shows precipitation with
daily precipitation less than 5 millimeters filtered out (color
map), near surface air temperature (solid contour line) and
sea level pressure (dashed contour line)

example, atmospheric rivers correlate strongly with the ver-
tical integration of water vapor, while tropical cyclones has a
more complex multi-variable pattern involving sea level pres-
sure, near surface wind and upper troposphere temperature.
Future work will need to develop generative CNN architec-
tures that are capable of discriminating between di↵erent
variables based on the event type and capable of handling
events at various spatial scale. Note that we have primar-
ily addressed detection of extreme weather patterns, but
not their localization. We will consider architectures for
spatially localizing weather pattern in the future.
Several researchers have pointed out that deeper and larger

CNNs perform better for classification and detection tasks[22,
28] compared to shallow networks. However, deep networks
require huge amount of data to be e↵ectively trained, and to
prevent model over fitting. Datasets, such as ImageNet, pro-
vide millions of labeled images for training and testing deep
and large CNNs. In contrast, we can only obtain a small
amount of labeled training data, hence we are constrained
on the class of deep CNNs that we can explore without suf-
fering from over-fitting. This limitation also points us to
the need for developing unsupervised approaches for climate
pattern detection. We believe that this will be critical for the
majority of scientific disciplines that typically lack labeled
data.

7. CONCLUSION
In this study, we explored deep learning as a methodol-

ogy for detecting extreme weather patterns in climate data.
We developed deep CNN architecture for classifying tropical

Weather fronts (left) and Tropical Cyclones (right) as 
detected by a convolutional neural network. 

Liu et al. KDD 2016 August 13-17, San Francisco, CA, USA 

troposphere. Figure 1 shows examples of tropical cyclones
simulated in climate models, that are correctly classified by
deep CNN (warm core structure is not shown in this figure).
Tropical cyclone features are rather well defined, as can be
seen from the distinct low pressure center and spiral flow
of wind vectors around the center. These clear and distinct
characteristics make tropical cyclone pattern relatively easy
to learn and represent within CNN. Our deep CNNs achieved
nearly perfect (99%) classification accuracy.

Figure 2 shows examples of tropical cyclones that are mis-
classified. After carefully examining these events, we believe
they are weak systems (e.g. tropical depression), whose low
pressure center and spiral structure of wind have not fully
developed. The pressure distribution shows a large low pres-
sure area without a clear minimum. Therefore, our deep
CNN does not label them as strong tropical cyclones.

Table 5: Confusion matrix for tropical cyclone classification

Label TC Label Non TC
Predict TC 0.989 0.003

Predict Non TC 0.011 0.997

Figure 1: Sample images of tropical cyclones correctly clas-
sified (true positive) by our deep CNN model. Figure shows
sea level pressure (color map) and near surface wind distri-
bution (vector solid line).

Figure 2: Sample images of tropical cyclones mis-classified
(false negative) by our deep CNN model. Figure shows sea
level pressure (color map) and near surface wind distribution
(vector solid line).

5.2 Classification Results for Atmospheric Rivers
In contrast to tropical cyclones, atmospheric rivers are dis-

tinctively di↵erent events. They are narrow corridors of con-
centrated moisture in atmosphere. They usually originate

in tropical oceans and move pole-ward. Figure 3 shows ex-
amples of correctly classified land falling atmospheric rivers
that occur on the western Pacific Ocean and north Atlantic
Ocean. The characteristics of narrow water vapor corridor
is well defined and clearly observable in these images.
Figure 4 are examples of mis-classified atmospheric rivers.

Upon further investigation, we believe there are two main
factors leading to mis-classification. Firstly, presence of
weak atmospheric river systems. For instance, the left col-
umn of Figure 4 shows comparatively weak atmospheric
rivers. The water vapor distribution clearly show a band of
concentrated moisture cross mid-latitude ocean, but the sig-
nal is much weaker comparing to Figure 3. Thus, deep CNN
does not predict them correctly. Secondly, the presence of
other climate event may also a↵ect deep CNN representa-
tion of atmospheric rivers. In reality, the location and shape
of atmospheric river are a↵ected by jet streams and extra-
tropical cyclones. For example, Figure 4 right column shows
rotating systems (likely extra-tropical cyclone) adjacent to
the atmospheric river. This phenomenon presents challenge
for deep CNN on representing atmospheric river.

Table 6: Confusion matrix for atmospheric river classifica-
tion

Label AR Label Non AR
Predict AR 0.93 0.107

Predict Non AR 0.07 0.893

Figure 3: Sample images of atmospheric rivers correctly clas-
sified (true positive) by our deep CNN model. Figure shows
total column water vapor (color map) and land sea boundary
(solid line).



• Infrastructure to access relevant climate data
– Global & Regional Climate Model projections
– Observations: satellite, reanalyses, surface

• Community Services with standard interfaces
– On-demand downscaling services
– On-demand product calculations

» Climate indices and indicators
» Bias-correction

– On-demand calculations
» Reduce datasize to be transferred over the network
» Ease access to calculations to end users

– Support to heterogeneous users

• Bridge e-infrastructure to research infrastructures
– Provide Data Analytics & Tailoring to users
– Enhance and Ease Data Sharing & Discovery
– Provide support for "Long Tail of Science" (LToS)

• Big Data Techniques
– Data Mining for Geophysical Data
– Neural Networks, Hadoop/Spark

Summary	and	Perspectives
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