



J.-F. Couchot<sup>1</sup>, R. Couturier<sup>1</sup>, M. Salomon<sup>1</sup>

<sup>1</sup>FEMTO-ST Institute - DISC Department - AND Team Univ. Bourgogne Franche-Comté (UBFC), France

January 30, 2017 / Grenoble Journées scientifiques Equip@Meso



### Introduction

- · Steganalysis is the counterpart of steganography
  - Steganography
    - A technique to hide a secret message in a cover media
    - No one apart from the intended recipient knows of the existence of the message
  - Steganalysis
    - A technique to detect whether a cover media embeds a secret message





### Introduction

- s
- Steganographic embedding schemes
  - · Must change the cover image as little as possible
  - · Work mainly in frequency or spatial domain
  - Frequency domain
    - Some coefficients of the chosen transform are changed
    - Discrete Cosine Transform, Discrete Wavelet Transform
    - Example : J(PEG)-UNIWARD
  - Spatial domain
    - Some pixel values are changed
    - ► Examples : S-UNIWARD, MiPOD, HILL, etc.
- Classical image steganalysis scheme
  - 1. Compute features (more than 30,000) using Rich Models
  - 2. Train a classifier (mostly FLD Ensemble)

Rich Models+Ensemble Classifier



### Introduction

- Deep learning has become a breakthrough technology
  - · Training large and deep neural networks is now affordable
  - Benefits from the computing power provided by GPU
- Main deep learning approaches
  - · Convolutional Neural Networks when dealing with images
  - · Long Short Term Memory for temporal data
- CNN are competitive for many image classification tasks
  - · State-of-the-art for MNIST, CIFAR, etc. (benchmark problems)
  - · Image captioning, detection of diabetic retinopathy, etc.
- Motivation
  - · Design an alternative to classical RM+EC steganalysis
  - · Easiest context: in spatial domain
  - Improve CNN-based steganalyzer results







- 1. State of the art of steganography / steganalysis
- 2. Attempt to understand when the CNN fails
- 3. Improving the detection accuracy
- 4. Results
- 5. Conclusion







- 1. State of the art of steganography / steganalysis
- 2. Attempt to understand when the CNN fails
- 3. Improving the detection accuracy
- 4. Results
- 5. Conclusion



## **Spatial Domain Steganography**

- · A distortion function gives for each pixel its modification cost
- S-UNIWARD<sup>1</sup> distortion function

$$\rho_U(X) = \sum_{i=1}^3 \frac{1}{|X \star K^i| + \sigma} \star |K^i|^{\frown}$$

- X is cover, K is a Daubechies-8 wavelet kernel
- · Small iff large variation of large cover wavelet coeff. in 3 dir.
- MiPOD<sup>2</sup> distortion function
  - · Estimate a local Gaussian cover image model
  - Induce a change rate and a distortion cost  $\rho_M(X)$

<sup>2</sup>V. Sedighi, R. Cogranne and J. Fridrich, *Content-Adaptive Steganography by Minimizing Statistical Detectability*. IEEE Transactions on Information Forensics and Security. 11(2): 221-234 (2016).



<sup>&</sup>lt;sup>1</sup>V. Holub, J. Fridrich, T. Denemark, *Universal Distortion Function for Steganography in an Arbitrary Domain*, EURASIP J. on Inf. Se., 2014(1).

# **Spatial Domain Steganography**



• HILL<sup>3</sup> distortion function

$$\rho_H(X) = \frac{1}{|X \star H_1| \star L_1} \star L_2, \text{ where } H_1 = \begin{bmatrix} -1 & 2 & -1 \\ 2 & -4 & 2 \\ -1 & 2 & -1 \end{bmatrix}$$

- X is cover,  $H_1$  is a high-pass filter
- · L1 and L2 are low-pass filters
- The distortion function value reflects the cover image model
  - + Easy-defined or smooth areas  $\rightarrow$  large value
  - Texture or "chaotic" areas  $\rightarrow$  small value

<sup>&</sup>lt;sup>3</sup>B. Li, M. Wang, J. Huang, X. Li, A New Cost Function for Spatial Image Steganography, 2014 IEEE International Conference on Image Processing (ICIP). pp. 4206-4210, 2014.



#### Spatial Rich Models+Ensemble Classifier Steganalysis

- Features: maxSRMd2<sup>4</sup> + Classifier: FLD Ensemble<sup>5</sup>
- Last known results<sup>2</sup>:



<sup>4</sup>T. Denemark, V. Sedighi, V. Holub, R. Cogranne and J. Fridrich, Selection-Channel-Aware Rich Model for Steganalysis of Digital Images, IEEE Workshop on Information Forensic and Security, 2014.

<sup>5</sup>J. Kodovský, J. Fridrich, and V. Holub, Ensemble Classifiers for Steganalysis of Digital Media. IEEE Transactions on Information Forensics and Security, Vol. 7, No. 2, pp. 432-444, April 2012



### **CNN-based Steganalysis Approaches**

- Non-exhaustive list
  - · Y. Qian, J. Dong, W. Wang, T. Tan (2015)
    - Deep learning for steganalysis via convolutional neural networks IS&T/SPIE Electronic Imaging, pp. 94090J–94090J
  - · L. Pibre, J. Pasquet, D. Ienco, M. Chaumont (2016)
    - Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover source mismatch Media Watermarking, Security, and Forensics 2016: 1-11
  - · G. Xu, H.-Z. Wu, Y.-Q. Shi (2016) (Xu et al.)
    - Structural Design of Convolutional Neural Networks for Steganalysis IEEE Signal Processing Letters, vol. 23, num. 5, pp. 708–712
- Remarks
  - Highlighting noise residuals with *F*<sub>0</sub> filter seems mandatory
  - · Some results limited by the use of fixed embedding patterns
  - Most competitive CNN with SRM is due to Xu *et al.* (2016)



## CNN proposed by Xu et al. (2016)

Architecture





#### How to further reduce the detection error?

- · First idea: change parameters in the CNN architecture?
  - · High-pass filtering with F<sub>0</sub>
  - · Convolutional layers configuration
  - etc.
- Second idea: use the best of both kind of approaches?
  - · Practically investigate the CNN designed by Xu et al. (2016)
  - · Original implementation
    - Caffe toolbox
    - Average of the predictions given by 5 CNNs
    - Training & testing on S-UNIWARD, HILL (payload: 0.1, 0.4 bpp)
  - Our implementation
    - Tensorflow library
    - Average of the predictions given by CNNs from the last 20 epochs
    - Training using MiPOD, testing on S-UNIWARD, MiPOD, HILL
  - · Is SRM+EC a better alternative when the CNN fail?



## **Experimental setup**

- Database of 10,000 (cover,stego) pairs for a given payload
  - Built from BOSSBase
    - Gray level images of 512 × 512 pixels
  - · Training and testing sets built randomly
    - 5,000 pairs for training
    - 5,000 pairs for testing
- Training setting
  - · SGD+momentum optimizer
  - · Mini-batch size of 64 samples
  - · Stopping criterion = maximum number of training epochs
    - 300 epochs for 0.4 bpp payload
    - 1,000 epochs for 0.1 bpp payload





- GPU computation facilities
  - $\cdot~$  Program development  $\rightarrow$  1 NVIDIA GPU Titan X
  - $\cdot\,$  Mesocentre  $\rightarrow$  node of 4 NVIDIA GPU Tesla K40
- Training times on NVIDIA GPU Titan X
  - $\cdot\,$  payload of 0.4 bpp  $\rightarrow \approx$  3 days for "very good" results
  - $\cdot\,$  payload of 0.1 bpp  $\rightarrow \approx$  7 days for "good" results

#### 15,000 hours of calculations using the Mesocentre



### Detection error of SRM+EC / the CNN

Average detection error

|                    | S-UNIWARD |       | MiPOD |       | HILL  |       |
|--------------------|-----------|-------|-------|-------|-------|-------|
|                    | 0.1       | 0.4   | 0.1   | 0.4   | 0.1   | 0.4   |
| Caffe (Xu et al.)  | 42.67     | 19.76 | Х     | Х     | 41.56 | 20.76 |
| TensorFlow (blind) | Х         | 20.52 | Х     | 19.36 | Х     | 20.25 |
| SRM + EC           | 39.84     | 18.06 | 41.18 | 21.42 | 42.96 | 23.31 |
| SRM + EC (blind)   | 40.57     | 20.85 | 41.18 | 21.42 | 43.35 | 23.99 |

- · SRM+EC and CNN have similar detection performances
- · Tensorflow implementation can perform blind steganalysis





#### 1. State of the art of steganography / steganalysis

#### 2. Attempt to understand when the CNN fails

- 3. Improving the detection accuracy
- 4. Results
- 5. Conclusion



### Examples of well-CNN-classified images



Embedding is performed using MiPOD with a payload of 0.4 bpp



#### **Examples of mis-CNN-classified images**



Embedding is performed using MiPOD with a payload of 0.4 bpp



### Characterization of mis-CNN-classified images

- $\overline{\rho_U}$ : average pixel distorsion cost of S-UNIWARD image
  - · Average of 12 CNNs on the BOSSBase



Detection error w.r.t image  $\overline{\rho_U}$  value for the CNN by Xu et al.



# Characterization of mis-CNN-classified images

• Quiz: Can you guess the  $\overline{\rho_U}$  value for each image?





# Characterization of mis-CNN-classified images

• Quiz: Can you guess the  $\overline{\rho_U}$  value for each image?







- 1. State of the art of steganography / steganalysis
- 2. Attempt to understand when the CNN fails
- 3. Improving the detection accuracy
- 4. Results
- 5. Conclusion



#### **Detection error of SRM+EC w.r.t.** $\overline{\rho_U}$

- Experimental setup
  - maxSRMd2 features+Ensemble Classifier
  - Average of 200 runs on the BOSSBase



Detection error w.r.t image  $\overline{\rho_U}$  value for SRM+EC.



### How to choose the better classifier?

• Compute  $\overline{\rho_U^{\cap}}$  corresponding to the intersection



- For image *I* compute  $\overline{\rho_U}(I)$ 
  - if  $\overline{\rho_U}(I) < \overline{\rho_U^{\cap}}$  use SRM+EC prediction
  - otherwise use CNN prediction





- 1. State of the art of steganography / steganalysis
- 2. Attempt to understand when the CNN fails
- 3. Improving the detection accuracy
- 4. Results

#### 5. Conclusion





#### • Average detection error according to $\overline{\rho_{II}^{\cap}}$ (payload of 0.4 bpp)

|                        | SRM+EC | $\overline{\rho_U^{\cap}}$ | CNN  | Proposal | SRM+EC | CNN   |
|------------------------|--------|----------------------------|------|----------|--------|-------|
| S-UNIWARD<br>non blind | 20.01  | 7.1                        | 8.25 | 14.82    | 18.06  | 19.76 |
| S-UNIWARD<br>blind     | 22.05  | 6.9                        | 9.50 | 15.87    | 20.85  | Х     |
| MiPOD<br>non blind     | 23.89  | 6.6                        | 9.26 | 15.65    | 21.42  | Х     |
| HILL<br>non blind      | 24.51  | 6.6                        | 9.78 | 16.22    | 23.31  | 20.76 |
| HILL<br>blind          | 25.41  | 6.6                        | 9.78 | 16.61    | 23.99  | Х     |





#### • Average detection error according to $\overline{\rho_{II}^{\cap}}$ (payload of 0.1 bpp)

|                        | SRM+EC | $\overline{\rho_U^{\cap}}$ | CNN   | Proposal | SRM+EC | CNN   |
|------------------------|--------|----------------------------|-------|----------|--------|-------|
| S-UNIWARD<br>non blind | 40.08  | 9.2                        | 23.36 | 38.06    | 39.84  | 42.67 |
| S-UNIWARD<br>blind     | 41.00  | 9.2                        | 23.36 | 38.88    | 40.57  | Х     |
| MiPOD<br>non blind     | 42.13  | 8.0                        | 25.84 | 37.82    | 41.18  | Х     |
| HILL<br>non blind      | 43.48  | 8.9                        | 21.88 | 40.24    | 42.96  | 41.56 |
| HILL<br>blind          | 44.30  | 8.3                        | 27.72 | 40.64    | 43.35  | Х     |





- 1. State of the art of steganography / steganalysis
- 2. Attempt to understand when the CNN fails
- 3. Improving the detection accuracy
- 4. Results
- 5. Conclusion



### Conclusion

- · A criterion to choose the appropriate steganalyzer
  - Lower detection errors
  - Blind steganalysis
  - · State-of-the-art results
- · More powerful GPU computing facilities will be needed
  - · To deal with larger datasets and reduce the training time
  - · To stay in the competition with other teams

JPEG steganalysis using hybrid deep-learning by Zeng et al. (2016)

- ▶ Use 3 Xu et al. "subnetworks" (1,536 features)
- Trainings with 50K, 500K and 5,000K JPEG images
- Cluster of 8 NVIDIA Tesla K80



# Thank you for your attention

# Any questions ?

